

α Cen: an usual triple system?

Thibault Merle – Université Libre de Bruxelles – Observatoire Royal de Belgique

Spock comes from a triple stellar system!

Based on the catalog of stars, brown dwarfs and planets described in "The 10 pc sample in the Gaia era", Reylé, Jardine et al, Astronomy & Astrophysics (2021).

The Solar Neighborhood

Census: 541

317 stars 20 white dwarfs 86 brown dwarfs 77 exoplanets

Stellar Systems: 340

	Singles:	246	73%
•	Binaries :	69	20%
•	Triples:	19	5.5%
•••	Quadruples: Quintuples:	3 2	1.5%

Galaxy Map Reylé et al. (2021)

Multiplicity fraction [%]

Multiplicity statistics in late-type stars

73	20	5.6	1.5	0.51	Reylé+ (2021)	10 pc sample (339 systems)
60	30	9	1	0.50	Moe & Di Stefano (2017)	25 pc solar-type sample (404 systems)
47	37	13	5	0.78	Furhmann+ (2017)	25 pc solar-type sample
54	33	8	5	0.64	Tokovinin (2014)	67 pc FG dwarf sample
54	34	9	3	0.61	Raghavan+ (2010)	25 pc solar-type sample (454 systems)
57	38	4	1	0.49	Duquennoy & Mayor (1991)	164 systems FG 22 pc
42	46	9	2	0.70	Abt & Levy (1976)	135 bright FG stars with V<5.5

Mean number of companions

Multiplicity fraction & Mean number of companions

Outline

- 1. Why should we care about stellar triples?
- 2. What are the characteristics of the α Cen stellar system?
- 3. How α Cen compares to other stellar triples?

1. Why should we care about stellar triples? Evolution in triples

For every 3 binaries formed at least one triple is born (Tokovinin 2014, Moe & Di Stefano 2017)

1. Why should we care about stellar triples? Examples 1/2

T. Merle - 27 Jun 2023

 α Cen: an unusual triple system?

1. Why should we care about stellar triples? Examples 2/2

HD 45166: The first magnetic Wolf-Rayet star? (Shenar+, accepted in Science)

Proposed scenario: merger in a triple; a magnetar progenitor with B~43 kG $\,$

HD 48565: the only triple system known to host a main sequence Ba-star (North+1994, Escorza+2019)

Significant portion of barium stars may be formed from hierarchical triple systems (Gao+ 2023)

Outline

- 1. Why should we care about stellar triples?
- 2. What are the characteristics of the α Cen stellar system?
- 3. How α Cen compares to other stellar triples?

2. What are the characteristics of α + Proxima Cen? Orbital parameters

	α Cen AB		Proxima around α Cen AB center-of-mass		
	0.1.1.1	HARPS + ESO	Parameter	Value	Unit
Element	Original	Coude Echelle		0 7	
a ('')	17.57 ± 0.022	17.66 ± 0.026	Semi-major axis <i>a</i>	$8.7^{+0.7}_{-0.4}$	kau
<i>i</i> (°)	79.20 ± 0.041	79.32 ± 0.044	Eccentricity e	$0.50^{+0.08}$	
ω (°)	231.65 ± 0.076	232.3 ± 0.11		-0.09	
$\Omega\left(^{\circ} ight)$	204.85 ± 0.084	204.75 ± 0.087	Period P	547^{+66}_{-40}	ka
е	0.5179 ± 0.00076	0.524 ± 0.0011	Inclination i	$107.6^{+1.8}$	dea
P(yr)	79.91 ± 0.011	79.91 ± 0.013		$107.0_{-2.0}$	ueg
T (Julian year)	1875.66 ± 0.012	1955.66 ± 0.014	Longitude of asc. node Ω	126^{+5}_{-5}	deg
$V_0 ({\rm kms^{-1}})$	-22.445 ± 0.0021	-22.390 ± 0.0042		-5	1
ϖ (mas)	747.1 ± 1.2 (adopted)	743 ± 1.3	Argument of periastron ω	$12.3_{-6.6}$	aeg
К	0.4581 ± 0.00098	0.4617 ± 0.00044	Epoch of periastron T_0^a	$+283^{+59}_{-41}$	ka
$\Delta V_{\rm B} \ ({\rm m \ s^{-1}})$	0.0 (adopted)	329 ± 9.0		-41	
$M_{\rm A} (M_{\odot})$	1.105 ± 0.0070	1.133 ± 0.0050	Periastron radius	$4.3^{+1.1}_{-0.9}$	kau
$M_{\rm B} (M_{\odot})$	0.934 ± 0.0061	0.972 ± 0.0045	Apastron radius	$13.0^{+0.3}_{-0.1}$	kau

Pourbaix & Boffin (2016)

Kervella, Thévenin & Lovis (2017)

2. What are the characteristics of α + Proxima Cen? Astrophysical parameters

T _{eff} [K]	(5750 – 5850)	(5150 - 5300)
log <i>g</i>	(4.26 – 4.42)	(4.30 – 4.65)
[Fe/H]	(0.12 - 0.28)	(0.19 - 0.29)
v _{mic} [km/s]	(1.00 - 1.46)	(0.81 - 1.28)

Proxima Cen (GJ 551, V*V645) Cen is a flaring dwarf star:

 $T_{\text{eff}} = 3098 \pm 56 \text{ K} \text{ (AMBER VLTI) Demory+ (2009)}$ [Fe/H] = [-0.4, +0.4] Logg = [4.6, 5.0] Edvardsson+ (1993), Maldonado+ (2015), Kuznetsov+ (2019), Maldonado+ (2020), etc.

Edvardsson(1988), Neuforge-Verheecke & Magain (1997), Allende Prieto+ (2004), Porto de Mello+ (2008), Bruntt+ (2010), Jofré+ (2015) Luck (2018)

Independent reference values:

 T_{eff} [K]5795±195231±21(Kervella+ 2017, Boyajian+ 2013)logg4.32±0.024.53±0.02(Heiter+ 2015, Kjeldsen+ 2008)

T. Merle - 27 Jun 2023

2. What are the characteristics of α + Proxima Cen? Astrophysical parameters Fe I Fe II

One of the most comprehensive analysis (Morel 2018):

- Differential analysis using the Sun as reference
- Test of 10+ linelists including the golden lines of Jofré (2014, 2015)
- Use of independent values for $T_{\rm eff}$ from interferometry (e.g. Bigot+ 2006) and log q from asteroseismology (e.g. Creevey+ 2013) to test against accuracy
- Age = 4.7–5.2 Gyr Bazot+ (2016)

13

2. What are the characteristics of α + Proxima Cen? Chemical abundances

α Cen A, B

The metal-rich nature of is known from decades (French & Powell 1971) But significant discrepancies in the ~60 study-to-study analyses: 0.03 (Bond+2006) < [Fe/H] < 0.29 (England 1980) 0.07 (Steinmetz+ 2020) < [Fe/H] < 0.37 (England 1980)

Non-LTE corrections (for NaI, OI, CaI, MgI ,FeI, SiI, TiI, MnI, CoI, ZnI, BaII) are generally small and can be neglected (Morel 2018)

Not solar-scaled (e.g. Na and Ni excess, depletion of neutron-capture elements, like Eu Wang+ 2020)

α Cen C

Uncertainties sufficiently large to have a similar chemical signature as the inner binary

2. What are the characteristics of α + Proxima Cen? Stellar evolution

Multiple Stellar Evolution (MSE) code https://github.com/hamers/mse Hamers+ (2021)

A population synthesis code for multiple-star systems

Hierarchical architecture: e.g. 1+2, 2+2, 1+3, 2+3, etc. Gravitational dynamics Stellar evolution Binary interaction Triple interaction

Simulations checked by Holly Preece

2. What are the characteristics of α + Proxima Cen? Secular evolution in stellar triples: Kozai-Lidov cycles

Mutual inclination:

$$\cos \Phi = \cos i_1 \cos i_2 + \sin i_1 \sin i_2 \cos \left(\Omega_1 - \Omega_2\right)$$

Famous example: Algol system (Baron+ 2012)

T. Merle - 27 Jun 2023

 α Cen: an unusual triple system?

Kozai (1962), Lidov (1962) cycles when the initial mutual inclination in [40, 140]° (see Naoz+ 2013)

Eccentricity of the inner binary can reach ~1

2. What are the characteristics of α + Proxima Cen? Stellar evolution

2. What are the characteristics of α + Proxima Cen? Stellar evolution

MSE 10^{8} 10^{7} [au] 00 [au] 10⁵ 10^{4} 5.0 12.5 15.0 17.5 20.0 0.0 2.5 7.5 10.0Time [Ga]

Fly-bys

Feng & John (2018)

In about 20% of simulated systems, Proxima is ejected within 5 Ga.

This fraction increases with timescale and encounter rate.

Based on impulsive approximation (v_encounter >> v_bound) Main uncertainty: encounter rate

Local stellar density of 0.11 pc⁻³

Outer orbit weakly bound

Long-time evolution of M-type stars

=> high probability of disruption events

Also favoured the capture scenario

T. Merle - 27 Jun 2023

Outline

- 1. Why should we care about stellar triples?
- 2. What are the characteristics of the α Cen stellar system?
- 3. How α Cen compares to other stellar triples?

3. How α Cen compare to other stellar triples? In the Solar Neighborhood

Confusion in the 10 pc sample where the system is presented as Aab (G9) + B (M0)

3. How α Cen compare to other stellar triples? Architecture of hierarchical stellar systems

3. How α Cen compare to other stellar triples? Statistics

Triple stars dynamics (Docobo+ 2021)

Triple stellar evolution (Toonen+ 2016, 2020)

Stability limit (Mardling & Aarseth 2001),

Classification based on periods, mutual inclinations, eccentricities and mass-ratios.

For α Cen, mutual inclination = 83⁺⁷-5 °

Tokovinin (2021)

Conclusion

Kornmesse

- Stellar triples represents 5 to 15% of all stellar systems (with a late-type primary)
- They can be invoked to explain many exotic astrophysical observations like blue stragglers, magnetic Wolf Rayet stars, some Ba stars, etc.
- α Cen AB,C is a wide binary (AB) of G2V K1V stars orbited by a distant and faint M5.5Ve companion (C) on eccentric orbits with a close to perpendicular mutual inclination
- Stellar evolution of α Cen AB, C:
 - KL effect possible but on timescale too large to be strongly efficient
 - Disruption by stellar encounters more probable
- α Cen AB, C is a misaligned wide triple system, like many other in this range of outer periods.