

On the core of α Cen A

Michaël Bazot

Heidelberg Institue for Theoretical Studies

June 26, 2023

α Cen A (and its core)

The Star...

- Close, bright object
 - Temperature
 - Luminosity
 - Surface abundances
 - Radius
- Close binary
 - Precise mass

.its Heart

- Age
- Asteroseismology

Credit: ESO/Digitized Sky Survey 2

Asteroseismology

Three ground-based campaigns

- Coralie (obs. 2001)
- UVES + UCLES (obs. 2001)
- HARPS (obs. 2005)

Three ground-based campaigns

- Coralie (obs. 2001)
- UVES + UCLES (obs. 2001)
- HARPS (obs. 2005)

Three ground-based campaigns

- Coralie (obs. 2001)
- UVES + UCLES (obs. 2001)
- HARPS (obs. 2005)

The stellar model

Structure and evolution – ASTEC

- Opal 95 opacities
- Opal equation of state
- Abundances: Grevesse et
 al. 1993

Oscillation – adipls

- Adiabatic
- Non-radial

Parameter estimation $d \rightarrow \hat{p}$ $p = \{M, \tau, X_0, Z_0, \alpha, \alpha_{ov}\}$

Bayesian model

Statistical model (likelihood)

 $\pi(\boldsymbol{d}|\boldsymbol{p}) = L(\boldsymbol{p}|\boldsymbol{d})$

Bayesian model (likelihood + prior)

 $\pi(\boldsymbol{p}|\boldsymbol{d}) \propto \pi(\boldsymbol{p}) L(\boldsymbol{p}|\boldsymbol{d})$

Sampling

Markov chain Monte Carlo

Data

- Temperature 5810 ± 50 K
- Luminosity 1.522 ± 0.30 L_o
- Metallicity Z/X = 0.039 ± 0.006
- Radius 1.224 ± 0.003 R_o
- Seismic data: HARPS

Bayesian model

Statistical model (likelihood)

 $\pi(\boldsymbol{d}|\boldsymbol{p}) = L(\boldsymbol{p}|\boldsymbol{d})$

Bayesian model (likelihood + prior)

 $\pi(\boldsymbol{p}|\boldsymbol{d}) \propto \pi(\boldsymbol{p}) L(\boldsymbol{p}|\boldsymbol{d})$

Sampling

Markov chain Monte Carlo

First results

Varying prescriptions

- NACRE reaction rates
- Overshoot: on/off

First results

Varying prescriptions

- NACRE reaction rates
- Overshoot: on/off

1105 ± 0.001 M

Is there a convective core?

Is there a convective core?

Is there a convective core?

M. Bazot et al. The Alpha Centauri System - Towards new worlds 26/06/2023

The many cores of α Cen A

Three shall be the number

- Convective core
- Radiative with H burning
- Isothermal radiative

Or is that so?

Changing the rates

- LUNA rates: ~3% with convective cores
- Distinguishing rates?

"Non-standard" effects

- Overshoot: larger cores, ppll
- He diffusion: ~89% with convective cores

Or is that so?

Changing the rates

- LUNA rates: ~3% with convective cores
- Distinguishing rates?

- larger cores, ppll
- He diffusion: ~89% with convective cores

Or is that so?

Changing the rates

- LUNA rates: ~3% with convective cores
- Distinguishing rates?

Going further

Nsamba et al. (2018)

- Data
 - de Meulenaer et al. (2010)
- Model: MESA
- Method
 - Bayesian setting
 - Sampling: AIMS

Salmon et al. (2021)

- Data
 - de Meulenaer et al. (2010)
- Model: MESA
- Method
 - Frequentist setting
 - Optimization (Levenberg-Marquardt)

Conclusions & Perspectives

Next steps for α Cen A

- Synthesis?
 - Same data
 - Same model
 - Same method
- Benchmarking (PLATO)

Seismology - present & future

- Re-analyzing old data?
- PLATO → No
- Large telescopes → ?

SONG — The α Cen A sessions

First results

First results

Conclusions & Perspectives

Next steps

- Data analysis
- Synthesis
 - Same data
 - Same model
 - Same method
- Benchmarking improved by SONG (still for PLATO)

Seismology – present & future

- Rotation
- Differential rotation
- Activity
- Connecting seismology and other approaches

Conclusions & Perspectives

Next steps

- Data analysis
- Synthesis
 - Same data
 - Same model
 - Same method
- Benchmarking improved by SONG (still for PLATO)

Seismology – present & future

- Rotation
- Differential rotation
- Activity
- Connecting seismology and other approaches

Back to the core !