

UPPSALA UNIVERSITET

Alpha Centauri A and B as reliable long-term members of the Gaia FGK Benchmark Stars

Ulrike Heiter, Orlagh Creevey, Caroline Soubiran,

Nadege Lagarde, Nathalie Brouillet, Paula Jofre, Laia Casamiquela, Claudia Aguilera Gomez, Sara Vitali, Clare Worley, Danielle de Brito Silva

université BORDEAUX

Outline

- 1. Gaia FGK Benchmark Stars (GBS)
- 2. Alpha Cen A / B
- 3. Conclusions

Gaia FGK Benchmark Stars (GBS): Motivation

GBS are reference stars with *effective temperatures* and *surface gravities* determined independently of spectroscopy, through fundamental relations.

The GBS were defined to **address the following needs**:

- Gaia needs to anchor its stellar astrophysical parameters on a set of well-characterized stars spanning the HR diagram and the full metallicity range of its stellar sources.
- Large spectroscopic surveys that derive atmospheric parameters and abundances automatically (e.g. RAVE, GALAH, Gaia-ESO, WEAVE, ...) need reference stars to assess and calibrate their results.
- The consistency of atmospheric parameters and abundances obtained with **different methods** needs to be evaluated with respect to reference values.
- Stellar evolution models need observational constraints from well-known stars.

3

Gaia FGK Benchmark Stars: Version 1 and Version 2

 $T_{\rm eff} = \left(\frac{F_{\rm bol}}{T}\right)^{0.25} (0.5\theta_{\rm LD})^{-0.5}$

• T_{eff} and log g are determined through **fundamental relations**, based on limb-darkened angular diameter θ_{LD} - bolometric flux F_{bol} - parallax π - mass N:

• **GBS V1**: Heiter+ 2015, **34 stars** (29 FGK, 5 M giants);
included **some stars** with indirect
$$\theta_{LD}$$
 (6) or F_{bo} (9), from calibrations,
all others: θ_{LD} from interferometry F_{bo} from literature based on SED integration;
 π from Hipparcos; *M* from manual fit to "Padova" and "Yonsei-Yale" models;
few metal-poor stars.

g =

• **GBS V2**: Jofré+ 2018, **36 stars**; 3 stars from V1 were not recommended, 5 metal-poor stars with θ_{LD} and F_{bol} from IRFM were added; metallicities and abundances of chemical elements were included.

Gaia FGK Benchmark Stars: Version 1 and Version 3 Kiel diagrams

GBS V1, Heiter+ 2015, 34 stars

Gaia FGK Benchmark Stars: Version 3

- 192 stars from literature search on interferometric diameters θ_{ID}
 - 30 stars from GBS V1+V2
 - ~100 stars from Salsi+2020 who used JMDC v2020 (Duvert+2016)
 - ~60 stars based on JMDC v2021 and PASTEL v2022 (Soubiran+2016)
 - new sources since 2015 include Creevey+2015, Ligi+2016, Baines+2018, 2021,
 Karovicova+2018, 2020, 2022, van Belle+2021
- Parallax π : Gaia DR3 for all but 10, Hipparcos, Kervella et al. 2017 (alpha Cen)
- Bolometric flux F_{hol} : SED fitting from a collection of spectro-photometric data
- Mass *M* : Use of Spins code and two different sets of evolution tracks

Gaia FGK Benchmark Stars V3: Bolometric flux

- Compiled fluxes: Virtual Observatory VOSA tool (Bayo+2008)
 - Catalogues that had photometry for at least 50 stars in our sample
 - E.g. 2MASS (Cutri+2003), GALEX (Bianchi+2017), synthetic photometry (Gaia Coll.+2023), various passbands
 - Between 15 and 400 flux points per star (median 101)
- Extinction derived from Vergely+2022 3D map
- Fitting of spectral energy distribution (SED) with Lejeune+1997 semi-empirical library of spectra (Creevey+2015)
 - Homogenous approach for full set of stars
 - Bootstrap (Monte-Carlo) approach to consider uncertainties in all atmospheric parameters + flux
 - Median and 68% percentiles were adopted as values and uncertainties

Gaia FGK Benchmark Stars V3: Bolometric flux

Photometry-converted-to-flux data and uncertainties (black) along with a fitted model (red).

Gaia FGK Benchmark Stars V3: Masses

- SPInS code (Lebreton & Reese 2020) applies a Bayesian approach to determine stellar parameters
- Input data: GBS V3 T_{eff}, luminosities and radii (from F_{hol} , θ_{1D} , π) + literature metallicities
- Stellar evolution models:
 - BaSTI (Pietrinferni+2004, 2006)
 - STAREVOL (Lagarde+2012, 2017)
- Main differences BaSTI / STAREVOL
 - Core convective overshooting for *M* > 1.1 M_o: overshoot parameter linear / 0.05 and 0.2 / 0.1 below and above 1.7 / 2.0 M_o
 - Solar chemical composition: Grevesse+1993 / Asplund+2009
- Average of both results was adopted

Gaia FGK Benchmark Stars V3: Masses

Comparison of our masses with GBS V1 (Heiter+2015) and Gaia DR3 (Gaia Coll., Creevey+2022) for BASTI (red) and STAREVOL (blue)

Gaia FGK Benchmark Stars V3: T_{eff} comparisons

Gaia FGK Benchmark Stars V3: log g comparisons

Outline

- 1. Gaia FGK Benchmark Stars (GBS)
- 2. Alpha Cen A / B
- 3. Conclusions

Alpha Cen A & B: Data and parameters

	π [mas]	$\theta_{_{ m LD}}$ [mas]	$F_{\rm bol} [{\rm erg/s/cm^2 x 10^{-8}}]$	A _v [mag]
HIP 71683	747.17 ± 0.61	8.502 ± 0.038	2808.67 ± 6.50	0.011 ± 0.01
HIP 71681	747.17 ± 0.61	5.999 ± 0.025	901.69 ± 0.75	0.011 ± 0.01

	<i>R</i> [R⊙]	<i>L</i> [L⊙]	<i>M</i> [M⊙]
HIP 71683	1.2234 ± 0.0056	1.5725 ± 0.0045	1.080 ± 0.007
HIP 71681	0.8632 ± 0.0037	0.5048 ± 0.0009	0.937 ± 0.014

GBS V3		T _{eff} [K]	logg [cgs]	GBS V1	T _{eff} [K]	logg [cgs]
	HIP 71683	5844 ± 13	4.296 ± 0.005		5792 ± 16	4.31 ± 0.01
	HIP 71681	5237 ± 11	4.537 ± 0.007		5231 ± 20	4.53 ± 0.03

Alpha Cen A&B as Gaia benchmark stars

Alpha Cen A & B: Comparison to dynamical masses

Comparison of our masses with dynamical masses for BASTI (red) and STAREVOL (blue)

Reference for alpha Cen A&B: Kervella+2016

Alpha Cen A & B: Exploring different input data

• F_{bol} with Av = 0 instead of 0.011

	<i>F</i> _{bol} [erg/s/cm ² x 10 ⁻⁸]	<i>L</i> [L⊙]	T _{eff} [K]
HIP 71683	2808 → 2785 [0.8%]	1.573 → 1.559 [0.9%]	5844 → 5831 [0.2%]
HIP 71681	902 → 895 [0.8%]	0.505 → 0.501 [0.8%]	5237 → 5226 [0.2%]

- Comparison of F_{hol} with Boyajian+2013 (used Av = 0 and **Pickles library**)
- Using parallax from Akeson+2021 instead of Kervella+2016, 747.17 mas \rightarrow 750.81 mas

F _{bol}	Soubiran+	Boyajian+	
HIP 71683	2785 ± 10	2716 ± 27	2.5%
HIP 71681	895 ± 5	898 ± 12	0.3%

<i>R</i> [R⊙]
$1.223 \rightarrow 1.2175 \; [0.5\%]$
0.863 → 0.863 [0.5%]

Outline

- 1. Gaia FGK Benchmark Stars (GBS)
- 2. Alpha Cen A / B
- 3. Conclusions
 - a. GBS V3 set of well-characterized stars is a powerful tool for calibration of parametrization methods, with number of stars increased by factor 5, more accurate T_{eff} and log g, based on more precise and homogeneous bolometric fluxes and Gaia DR3 parallaxes
 - b. **Alpha Cen** is an ideal system as an anchor for G and K stars, e.g. for differential analysis
 - c. Case of **alpha Cen validates** our "homogenous analysis" of the **GBS** set, which is also done in large scale surveys
 - d. **Properties of alpha Cen A&B** are well-known, different input data have effects of less than 1%