

Established by the European Commission

Photo: ESO/B. Tafreshi (twanight.org)/Digitized Sky Survey 2

Conjunctions and microlensing events in α Centauri

Pierre Kervella, Paris Observatory

Where is α Cen ?

Sky trajectory of α Cen AB

- Accurate orbital parameters, orbital parallax and barycentric proper motion
- The apparent motion of α Cen is relatively complex: proper motion + orbital motion + parallactic wobble + perspective effects

α Cen AB's orbit

- The extreme brightness of the two stars is *not* an advantage to measure their positions
- Addition of high precision radial velocities (HARPS)
- Orbital fit provides high accuracy stellar masses (0.4%) and parallax (0.05%)

Akeson et al. (2021, AJ, 162, 14)

Radial velocities of α Cen A & B

- Barycentric radial velocity = -22.4 km/s
- Final accuracy on AB barycenter velocity of ± 5 m/s
- Orbital fit provides high accuracy stellar masses (0.4%) and parallax (0.05%)

Akeson et al. (2021, AJ, 162, 14)

The apparent trajectory of α Centauri AB

large parallactic wobble

Combination of fast proper motion, orbital motion (80 years period) and

Stellar conjunctions

Declination

Astrometry of stellar conjunctions

- **Objectives**: anchor AB to the *Gaia* celestial frame and measure gravitational lensing events
- Position measured with ~ 50 μas accuracy from differential astrometry between S stars and α Cen AB with the VLTI/GRAVITY interferometer
- Goal to estimate the proper motion
 vector of the barycenter of *α* Cen AB to ± 20 µas/year (± 12 cm/s)

eclination

α Cen B-S1 conjunction in 2021

-60°49'48"

49"

50"

- Observation of B-S1 obtained with GRAVITY on 2 April 2021
 @ 660 mas (0.9 au projected)
- High B-S1 contrast of 14 mag in the K band (that is, a factor ~300 000)
- Second observation obtained on 25 April 2021 @ 288 mas (0.4 au).
- Expected gravitational lensing displacement of S1 ~20 mas
- Data analysis in progress

α Cen A-S5 conjunction

- In April 2028, *α* Cen A will approach star S5 within < 0.1"
- S5 is faint in the visible, but bright in the infrared, **mK**_s = **7.76 (contrast** ~5000 with A)

 About 1/2 probability that S5 enters the **Einstein ring** of α Cen A

Kervella et al. (2016, A&A 594, A107)

Nature of source S5

Band	$\lambda_0[\mu \mathrm{m}]$	Mag.	Flux ^a			
		STAR S5				
Bessel V	0.54	21.53 ± 0.95	0.9 ± 0.9			
Bessel R	0.64	20.00 ± 0.41	2.2 ± 1.0			
Bessel I	0.79	18.66 ± 0.27	3.9 ± 1.1			
Bessel Z	0.84	18.00 ± 0.22	6.9 ± 1.6			
2MASS J	1.25	11.60 ± 0.03	717 ± 20			
2MASS H	1.62	9.125 ± 0.027	2540 ± 64			
2MASS K _s	2.16	7.756 ± 0.024	3380 ± 76			
IRAC 3.6	3.6	7.161 ± 0.058	888 ± 49			
IRAC 4.5	4.5	6.912 ± 0.052	458 ± 22			
WISE W2	4.6	6.089 ± 0.025	886 ± 21			
IRAC 5.8	5.8	6.500 ± 0.027	258 ± 6.4			
IRAC 8.0	8.0	6.257 ± 0.027	94.5 ± 2.5			
MSX6C A	8.28	6.05 ± 0.06	89.4 ± 4.7			
WISE W3	11.6	5.725 ± 0.017	33.4 ± 0.5			
WISE W4	22.1	3.924 ± 0.029	13.7 ± 0.4			
MIPS 24	24	4.22 ± 0.02	7.8 ± 0.2			

Kervella et al. A&A 594, A107 (2016)

A-S5 conjunction 2028

Einstein ring Ang. radius = 82 mas

~ 20 April 2028

 α **Cen A** mK = -1.5 LD = 8.5 mas

Gravitational deflection

Planets from astrometric lensing

Opportunities in the coming years

	-60°49'30" 40" 50'00"			4h39m25.0s				20.0s Ri	ght Ascension		si s			10.0s		
$+^a$	0:r["]	Date ^b	# ^c	K07 ^d	Шų	ΔV	Шт	ΔI	Ш v	ΛK	RA	Dec	Enoch	11. ^e	<u>us</u> ^d	σ^{d}
 	$\frac{\rho_{\text{min}}}{0.205 \pm 0.177}$	2021.05.02	<u> </u>	1266	20.0	107	17.6	17.0	12.50		14.20.25.224		2000 152	<u>μα</u> 5	$\frac{\mu_0}{10}$	$\frac{0 \mu}{10}$
D A	0.203 ± 0.177	2021-03-03	21	1200	$20.0_{0.5}$	10./	$17.0_{0.2}$	1/.2	$13.38_{0.17}$	14.2	14:39:23.224	-00.49.49.07	2009.132	-3	-12	12
A D	1.043 ± 0.112	2023 - 04 - 27	52 52	1104 1101	$13.7_{0.2}$	1J./ 10/	$13.3_{0.2}$	15.9	$11.14_{0.03}$	12.0	14:39:24.283	-00.49.33.80	2010.230	+2	— <u>/</u>	J 11
Ď Л	1.334 ± 0.180	2023 - 12 - 12	33	11ð1 1112	19./ _{0.3}	18.4	10.0 _{0.2}	13.0 15 5	12.890.11	13.3	14:39:24.204	-00:49:40.03	2009.152	+1	-4	
л В	2.433 ± 0.119	2024-10-26	54 SE	1113	$1/.3_{0.2}$	10.2	13.9 _{0.2}	13.3	-	-	14:39:23.483	-60:49:42.91	2016.236	+0	+8) 5
A	0.013 ± 0.133	2028-05-06	2 2	0951	$21.3_{0.9}$	21.J	18./ _{0.3}	19.3	/./00.02	9.3	14:39:21.380	-00:49:52.89	2010.230	-5	-5) 1 1
	0.269 ± 0.277	2031-05-25	56	0836	16.9 _{0.2}	15.6	15.4 _{0.2}	14.9	_		14:39:20.518	-60:49:41.41	2009.152	-0	-1	11

- With GRAVITY, we measure the differential position of α Cen A and B and the background S stars to 50-100 µas.
- determinations of A and B

• Potential for very accurate parallax and proper motion, as well as gravitational mass

Kervella et al. A&A 594, A107 (2016)

Summary

- Objective #1: determine the gravitational mass of Alpha Cen A and B, particularly A to ~0.1% with S5 event
- Objective #2: search for gravitational signature of planets from astrometric shift due to secondary lensing
- Objective #3: measure the parallax and proper motion of the pair with very high accuracy

Breakthrough Starshot

Technological challenges

http://breakthroughinitiatives.org/challenges/3

Starchip 60 000 g for 3' 300°C

Light beamer **Combining focus of** individual laser beams **100 gigawatts**

Interstellar trajectory

- A serious difficulty: pointing accuracy, astrometry of the three stars
- A *major* difficulty: how to slow down ?
- A possible solution: interstellar "pinball" of photo-gravitational velocity reduction
- Objective: orbital injection around Proxima b

Geometry of a slingshot trajectory. The star is in the origin of the coordinate system. The trajectory of the solar sail, with instantaneous velocity v, is shown as a dotted curve in the x-y plane.

Heller & Hippke 2017, ApJL, 835, 32

Heller & Hippke 2017, ApJL, 835, 32

Heller, Hippke & Kervella 2017, AJ, 154, 115

Starshot navigation

- Projected position, proper motion and distance of the target star are critical for a successful rendez-vous
- A very well known cruise velocity of the spacecraft is also essential

Adopted flight time: 20 years Adopted distance: 4.35 light years